Cardiac function and oxygen saturation during maximal breath-holding in air and during whole-body surface immersion.
نویسندگان
چکیده
INTRODUCTION The magnitude of the oxygen-sparing effect induced by the diving response in humans is still under debate. We wished to compare cardiovascular changes during maximal breath-holding (BH) in air and during whole-body immersion at the surface in a group of BH divers. METHODS Twenty-one divers performed a maximal static apnea in air or during whole-body immersion. Dopplerechocardiography, arterial blood pressure and haemoglobin saturation (SaO₂) were obtained at the beginning of, and at 1/3, 2/3 and maximal BH time. RESULTS BH time was on the average 3.6 ± 0.4 min, with no differences between the two conditions. SaO₂ significantly decreased during BH in both conditions, but was significantly higher during immersion as compared to the dry (P = 0.04). In both conditions, BH induced a significant linear increase in right ventricular diameter (P < 0.001), left ventricular (LV) volumes (P < 0.001) and LV stroke volume (P < 0.001) but a significant linear decrease in LV ejection fraction (P = 0.033). In both conditions, Doppler diastolic parameters showed changes suggesting a constrictive/restrictive left ventricular filling pattern (i.e., an increase of early diastolic left ventricular filling velocity, P = 0.005, and a decrease in the deceleration time of early diastolic left ventricular filling. P < 0.001). CONCLUSION BH induces progressive LV enlargement both in air and whole-body immersion, associated with reduced LV ejection fraction and progressive hindrance to diastolic filling. For a similar apnea duration, SaO₂ decreased less during immersed BH, indicating an O₂-sparing effect of diving, suggesting that interruption of apnea was not triggered by a threshold critical value of blood O₂ desaturation.
منابع مشابه
Increased pulmonary vascular resistance and reduced stroke volume in association with CO2 retention and inferior vena cava dilatation.
Changes in cardiovascular parameters elicited during a maximal breath hold are well described. However, the impact of consecutive maximal breath holds on central hemodynamics in the postapneic period is unknown. Eight trained apnea divers and eight control subjects performed five successive maximal apneas, separated by a 2-min resting interval, with face immersion in cold water. Ultrasound exam...
متن کاملDiving response and arterial oxygen saturation during apnea and exercise in breath-hold divers.
This study addressed the effects of apnea in air and apnea with face immersion in cold water (10 degrees C) on the diving response and arterial oxygen saturation during dynamic exercise. Eight trained breath-hold divers performed steady-state exercise on a cycle ergometer at 100 W. During exercise, each subject performed 30-s apneas in air and 30-s apneas with face immersion. The heart rate and...
متن کاملInvoluntary breathing movements improve cerebral oxygenation during apnea struggle phase in elite divers.
We investigated whether the involuntary breathing movements (IBM) during the struggle phase of breath holding, together with peripheral vasoconstriction and progressive hypercapnia, have a positive effect in maintaining cerebral blood volume. The central hemodynamics, arterial oxygen saturation, brain regional oxyhemoglobin (bHbO(2)), deoxyhemoglobin, and total hemoglobin changes and IBM were m...
متن کاملAssessing and ensuring patient safety during breath-holding for radiotherapy
OBJECTIVE While there is recent interest in using repeated deep inspiratory breath-holds, or prolonged single breath-holds, to improve radiotherapy delivery, breath-holding has risks. There are no published guidelines for monitoring patient safety, and there is little clinical awareness of the pronounced blood pressure rise and the potential for gradual asphyxia that occur during breath-holding...
متن کاملMuscle oxygen supply during cold face immersion in breath-hold divers and controls.
INTRODUCTION The human diving reflex is characterized by bradycardia, decreased cardiac output, and peripheral vasoconstriction, and has an oxygen-conserving effect both at rest and during exercise. However, the resultant time course and extent of muscle desaturation is unknown. METHODS We used near-infrared spectroscopy to continuously measure the decrease in tissue oxygen saturation (StO2) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diving and hyperbaric medicine
دوره 43 3 شماره
صفحات -
تاریخ انتشار 2013